Spek, A. L. (1988). J. Appl. Cryst. 21, 578-579.

- Stoe & Cie (1988a). EMPIR. Data Setup for Empirical Absorption Correction. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988c). REDU/4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

Viswanathan, K. (1974). J. Chem. Soc. Dalton Trans. pp. 2170-2172.

Acta Cryst. (1999). C55, 841-843

γ -Mo₄O₁₁

Hoong-Kun Fun,^a Ping Yang,^a Minoru Sasaki,^b Masasi Inoue^b and Hideoki Kadomatsu^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bGraduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan, and ^cCryogenic Center, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan. E-mail: hkfun@usm.my

(Received 26 May 1998; accepted 4 January 1999)

Abstract

The space group of the title compound, tetramolybdenum undecaoxide, has been confirmed to be $Pna2_1$. Three out of the four Mo atoms are each coordinated by six O atoms to form MoO₆ octahedra. The remaining Mo atom is coordinated by four O atoms to form an MoO₄ tetrahedron. In the crystal, all the octahedra share their corner O atoms to form stacked quasi-two-dimensional layers which are connected by the tetrahedra.

Comment

The transport, structure and charge-density-wave (CDW) properties of γ -phase molybdenum oxide, *i.e.* γ -Mo₄O₁₁, have been extensively studied (Schlenker, 1989; Kihlborg, 1959; Koyano *et al.*, 1988; Inoue *et al.*, 1988; Gao *et al.*, 1995, 1996). However, this structure has been assigned different space groups, *Pnma* and *Pna*2₁, based on consideration of the packing and powder diffraction data, respectively (Wyckoff, 1967; JCPDS, card 5–337; Ghedira *et al.*, 1985; Magresi, 1948). To resolve this space-group ambiguity, a single-crystal structure determination was carried out.

The space group of γ -Mo₄O₁₁ has been confirmed to be *Pna*2₁. In the crystal, Mo atoms Mo1, Mo2 and Mo3 are each coordinated by six O atoms to form MoO₆ octahedra and the remaining Mo4 atoms are each coordinated by four O atoms to form MoO₄ tetrahedra. The coordination and the bond lengths are as shown in Fig. 1 and Table 1, respectively. The octahedra share their corners to form stacked quasitwo-dimensional layers which are interconnected by MoO₄ tetrahedra through mutual sharing of the O1, O4, O6 and O7 atoms. The minimum and maximum Mo—O bond lengths are 1.702 (4) (Mo4—O6) and 2.117 (4) Å (Mo3—O6), respectively, which are close to reported values (Orpen *et al.*, 1989). The axial O— Mo—O angles in the octahedra vary from 161.09 (13) to 176.4 (2)° for O11—Mo3—O4 and O3—Mo1—O5, respectively. Similarly, the bond angles in the tetrahedra range from 108.5 (2) (O6—Mo4—O1 and O1—Mo4— O7) to 113.1 (2)° (O4—Mo4—O7).

Fig. 1. The structure of the title compound showing 90% probability displacement ellipsoids. For clarity, some of the atoms are marked at symmetry-related positions. The origin of the coordinates is shifted to the Mo2 atom site.

Experimental

Crystals of the title compound was grown over a period of a week by a chemical-vapour-transport technique from a mixture of MoO₂:MoO₃ powders in a 1:3 ratio using a two-zone furnace. A guartz ampoule (about 15 cm long and 1.2 cm in diameter) packed with the powders and I_2 as a carrier gas (at 5 mg cm⁻³) was placed in the temperature region $T_L = 948$ and $T_{\rm H} = 1008$ K. The crystals grown were plate-like, with surfaces parallel to bc planes (Koyano et al., 1988; Inoue et al., 1988).

Crystal data

Mo ₄ O ₁₁	Mo $K\alpha$ radiation
$M_r = 559.76$	$\lambda = 0.71073 \text{ Å}$
Orthorhombic	Cell parameters from 7459
Pna2 ₁	reflections
a = 24.0723(5) Å	$\theta = 1.60 - 33.17^{\circ}$
b = 6.6483(1) Å	$\mu = 5.766 \text{ mm}^{-1}$
c = 5.3569(1) Å	T = 296 (2) K
$V = 857.32(3) \text{ Å}^3$	Thin plate
Z = 4	$0.48 \times 0.20 \times 0.02 \text{ mm}$
$D_x = 4.337 \text{ Mg m}^{-3}$	Black
D_m not measured	

Data collection

Siemens SMART CCD area-	2236 reflections with
detector diffractometer	$I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.050$
Absorption correction:	$\theta_{\rm max} = 29.99^{\circ}$
empirical using SADABS	$h = 0 \rightarrow 33$
(Sheldrick, 1996)	$k = 0 \rightarrow 9$
$T_{\rm min} = 0.454, T_{\rm max} = 0.891$	$l = -7 \rightarrow 7$
6465 measured reflections	
2267 independent reflections	

Refinement

$\Delta \rho_{\rm max}$ = 3.995 e Å ⁻³
$\Delta \rho_{\rm min} = -2.633 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction:
SHELXTL (Siemens,
1996a)
Extinction coefficient:
0.0303 (11)
Scattering factors from
International Tables for
Crystallography (Vol. C)

Table 1. Selected geometric parameters (Å, °)

Mo1–O3 ¹	1.837 (5)	Mo2—O7	2.066 (3)
Mo1—O3	1.847 (5)	Mo3-010 ^{iv}	1.725 (4)
Mo1—O2	1.888 (2)	Mo3	1.731 (3)
Mo1—O5	1.951 (4)	Mo3—O11 ^{vi}	1.749 (3)
Mo1-09	1.956 (4)	Mo304	2.040 (3)
Mo1-011	1.961 (3)	Mo3-O1 ^{vu}	2.081 (4)
Mo2—O5 ⁱⁱ	1.763 (4)	Mo306	2.117 (4)
Mo2—O9 ⁱⁱⁱ	1.771 (4)	Mo4-O6 ^v	1.702 (4)
Mo2—O2	1.795 (2)	Mo401 ^v	1.725 (4)
Mo2—O10	2.042 (4)	Mo404	1.734 (3)
Mo2—O8	2.043 (3)	Mo4-07	1.742 (3)

O3 ⁱ —Mo1—O3	93.57 (2)	09 ⁱⁱⁱ —Mo2—O7	92.0 (2)
O3 ⁱ —Mo1—O2	94.7 (2)	O2—Mo2—O7	164.57 (12)
O3-Mo1-O2	95.3 (2)	O10-Mo2-O7	80.0 (2)
O3 ⁱ —Mo1—O5	176.4 (2)	O8—Mo2—O7	81.61 (13)
O3Mo1O5	88.7 (2)	O10 ^{iv} —Mo3—O8 ^v	101.4 (2)
O2-Mo1-O5	87.9 (2)	O10 ^{iv} —Mo3—O11 ^{vi}	100.0 (2)
O3 ⁱ —Mo1—O9	89.5 (2)	08 ^v —Mo3—O11 ^{v1}	99.9 (2)
O3-Mo1-O9	175.5 (2)	O10 ^{iv} —Mo3—O4	93.0 (2)
O2-Mo1-O9	87.8 (2)	O8 ^v —Mo3—O4	90.9 (2)
O5Mo1O9	88.06 (14)	O11 ^{vi} —Mo3—O4	161.09 (13)
O3 ⁱ —Mo1—O11	88.0 (2)	O10 ^{iv} Mo3O1 ^{vii}	163.4 (2)
O3-Mo1-011	87.2 (2)	08 ^v —Mo3—O1 ^{vii}	92.3 (2)
O2-Mo1-011	176.21 (11)	O11 ^{v1} Mo3O1 ^{vii}	86.6 (2)
O5-Mo1-O11	89.3 (2)	O4-Mo3-O1 ^{vii}	77.4 (2)
O9-Mo1-O11	89.5 (2)	O10 ^{iv} —Mo3—O6	87.3 (2)
O5 ^u —Mo2—O9 ⁱⁱⁱ	97.53 (15)	O8 ^v —Mo3—O6	167.0 (2)
O5 ^u —Mo2—O2	97.6 (2)	O11 ^{vi} —Mo3—O6	87.9 (2)
O9 ⁱⁿ Mo2O2	98.7 (2)	O4—Mo3—O6	79.0 (2)
O5 ⁱⁱ —Mo2—O10	87.4 (2)	O1 ^{vii} —Mo3—O6	77.7 (2)
O9 ⁱⁱⁱ —Mo2—O10	170.8 (2)	06^{v} —Mo4—O1 ^v	108.5 (2)
O2-Mo2-O10	88.3 (2)	O6 [°] —Mo4—O4	109.1 (2)
O5"—Mo2—O8	169.5 (2)	O1 ^v —Mo4—O4	108.6 (2)
O9 ⁱⁱⁱ —Mo2—O8	90.9 (2)	O6 [°] —Mo4—O7	109.0 (2)
O2—Mo2—O8	87.1 (2)	01°—Mo4—07	108.5 (2)
O10-Mo2-O8	83.4 (2)	O4-Mo4O7	113.1 (2)
O5 ⁱⁱ —Mo2—O7	91.9 (2)		. ,
6			

Symmetry codes: (i) -x, -y, $\frac{1}{2}+z$; (ii) -x, 1-y, $\frac{1}{2}+z$; (iii) -x, 1-y, $z-\frac{1}{2}$; (iv) $-\frac{1}{2}-x$, $\frac{1}{2}+y$, $z-\frac{1}{2}$; (v) $-\frac{1}{2}-x$, $\frac{1}{2}+y$, $\frac{1}{2}+z$; (vi) $x-\frac{1}{2}$, $\frac{1}{2}-y$, z; (vii) x, y, 1 + z.

The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures. Each set had a different φ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω . The crystal-to-detector distance was 4 cm and the detector swing angle was -35° . Coverage of the unique set was over 99% complete. Crystal decay was monitored by repeating 30 initial frames at the end of data collection and analysing the duplicate reflections; it was found to be negligible. The largest peak in the difference map $(3.995 \text{ e } \text{\AA}^{-3})$ is at $(0.0569, 0.1633, 0.3951), 0.68 \text{ \AA}$ from the Mo1 atom, and the largest hole $(-2.633 \text{ e} \text{ Å}^{-3})$ is at (-0.2972, 0.7066, -0.1049), 1.61 Å from the O6 atom. The structure can also be solved in space group Pnma. However, the refinement yielded high R values (wR2 = 0.1776 and R1 =0.0701 for 1363 observed reflections) and large s.u.'s for bond lengths.

Data collection: SMART (Siemens, 1996b). Cell refinement: SAINT (Siemens, 1996c). Data reduction: SAINT. Program(s) used to solve structure: SHELXTL (Sheldrick, 1996a). Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL.

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 190-9609-2801. PY thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship under the staff number USM(SAA)0143.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1071). Services for accessing these data are described at the back of the journal.

References

Gao, W. X., Sasaki, M., Negishi, H., Inoue, M. & Kulbachinskii, V. (1995). J. Phys. Soc. Jpn, 64, 518-526.

- J. Low Temp. Phys. 102, 487-497.
- Ghedira, M., Vincent, H., Marezio, M., Marcus, J. & Fur Caudot, G. (1985). J. Solid State Chem. 56, 66-72.
- Inoue, M., Ohara, S., Horisaka, S., Koyano, M. & Negishi, H. (1988). Phys. Status Solidi B, 148, 659-671.
- JCPDS (5-337). Powder Diffraction File, Set 5. The Joint Committee on Powder Diffraction Standards, 1845 Walnut Street, Philadelphia, Pennsylvania 19103, USA.
- Kihlborg, L. (1959). Acta Chem. Scand. 13, 954-962.
- Koyano, M., Ohara, S., Negishi, H., Sasaki, M., Inoue, M., Nomura, M. & Fujiwara, H. (1988). Phys. Status Solidi B, 147, 559-565.
- Magresi, A. (1948). Acta Chem. Scand. 2, 861-871.

Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.

- Schlenker, C. (1989). In Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides. Dordrecht/Boston/London: Kluwer Academic Publishers.
- Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Dectector Data. University of Göttingen, Germany.
- Siemens (1996a). SHELXTL Reference Manual. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996b). SMART Software Reference Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996c). SAINT Software Reference Manual. Version 4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wyckoff, R. W. G. (1967). Crystal Structures, Vol. 2, pp. 84-85. New York/London/Sydney: Interscience Publishers (a division of John Wiley & Sons).

Acta Cryst. (1999). C55, 843-845

RbMoO₂AsO₄

MOHAMED FAOUZI ZID ET TAHAR JOUINI

Département de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisia. E-mail: tahar.jouini@fst.rnu.tn

(Reçu le 20 avril 1998, accepté le 30 novembre 1998)

Abstract

The title compound, rubidium molybdyl arsenate, consists of AsO₄ tetrahedra and MoO₆ octahedra sharing corners to form a three-dimensional framework containing large tunnels, parallel to $[\bar{1}10]$, where the Rb⁺ ions are located. It is shown that in the series $AMoO_2XO_4$ (A = Na, K, Rb; X = P, As), the only isotypic compounds are KMoO₂PO₄ and RbMoO₂AsO₄ in which the ratio of atomic radii [r(K)/r(P) = r(Rb)/r(As)] remains constant.

Commentaire

charpente ouverte formée d'octaèdres et de tétraèdres, KMoO₂PO₄ (Peascoe & Clearfield, 1991), NaMoO₂-

Gao, W. X., Sasaki, M., Negishi, H., Takase, K. & Inoue, M. (1996). nous poursuivons l'exploration du diagramme Rb-Mo-As-O dans lequel nous avons précédemment mis en évidence le composé en couches Rb₂MoO₂As₂O₇ (Zid et al., 1998). Une nouvelle phase, RbMoO₂AsO₄, a été caractérisée dans ce diagramme. Elle est formée par une charpente anionique tridimensionnelle, MoO₂AsO₄, constituée d'octaèdres MoO₆ et des tétraèdres AsO₄ partageant des sommets. On peut la décomposer en chaines $(MoAsO_8)_n$ parallèles à la direction [110], reliés entre elles par les ponts mixtes Mo-O-As. Elles délimitent des tunnels où logent les cations Rb⁺ (Fig. 1). Le caractère ouvert de cette structure est mis en évidence dans la projection selon [110], où se manifestent des cycles à huit polyèdres constituant la section de larges canaux, communiquant selon la direction [001], par des fenêtres formées par des cycles à quatre polyèdres.

Fig. 1. Projection de la structure de RbMoO₂AsO₄ selon [110].

Les distances As-O, Mo-O et Rb-O (Tableau 1) sont en bon accord avec le nombre et la nature des liaisons formés dans les polyèdres AsO₄, MoO₆ et RbO₈. Elles sont conformes à celles rencontrées dans d'autres molybdényl arséniates (Zid & Jouini, 1996a,b,c; Zid et al., 1998). En effet, le calcul des forces de valence (Brown & Altermatt, 1985; Brese & O'Keeffe, 1991) de ces liaisons confirment les valeurs de charges des ions As (+5,096), Mo (+5,023) et Rb (+1,028) attendues dans la structure.

L'examen de la série de composés de formu-Dans le but de trouver de nouveaux matériaux à lation analogue: NaMoO₂PO₄ (Kierkegaard, 1962),